Have You Done Fiber Optic Transceiver Testing?

Laura Yu

Visitors: 65

Today, many users apply optical network components from different suppliers. Thus, we need to test if the optical transceivers are compatible and interoperatable with other components. Otherwise, components are possible to be broken. Meanwhile, the entire network can’t operate well.

As we know, a fiber optical transceiver has a transmitter and a receiver. The transceiver transmits data trough a fiber from transmitter to receiver. But the system doesn’t work and doesn’t get your desired bit-error-ratio (BER). What’s wrong? Is there anything wrong with the transmitter? Or is the receiver at fault? Maybe both are faulty. A low-quality transmitter can compensate for by a low-quality receiver (and vice versa). So specifications should guarantee that any receiver can interoperate with a worst-case transmitter, and any transmitter will provide a signal with sufficient quality so that it will interoperate with a worst-case receiver.

But it’s difficult to define worst case. The minimum level of power needed by the receiver to achieve the system BER target will give the order about minimum allowed output power level to the transmitter. If the receiver can only tolerate a certain level of jitter, this will be used to define the maximum acceptable jitter from the transmitter. Generally, to test an optical transceiver, there are four steps, including the transmitter testing and receiver testing.

Transmitter Testing

Transmitter parameters may include wavelength and shape of the output waveform while the receiver may specify tolerance to jitter and bandwidth. The following are the steps to test a transmitter:

First, to test the transmitter, the input signal must be good enough. Measurements of jitter and an eye mask test must be performed to confirm the quality. An eye mask test is the common method to view the transmitter waveform and provides a wealth of information about overall transmitter performance.

Second, the optical output of the transmitter must be tested using several optical quality metrics such as a mask test, OMA (optical modulation amplitude), and Extinction Ratio.

Receiver Testing

To test a receiver, there are also two steps:

Third, different from the transmitter testing, which requires the input signal must be good enough, the receiver testing involves sending in a signal that is of poor enough quality. To do this, a stressed eye representing the worst case signal shall be created. This is an optical signal, and must be calibrated using jitter and optical power measurements.

Finally, testing the electrical output of the receiver must be performed. Three basic categories of tests must be performed:

a. A mask test, which ensures a large enough eye opening. The mask test is usually accompanied by a BER (bit error ratio) depth.

b. Jitter budget test, which tests for the amount of certain types of jitter.

c. Jitter tracking and tolerance, which tests the ability of the internal clock recovery circuit to track jitter within its loop bandwidth.

All in all, fiber optic transceiver testing is not easy. But it’s necessary to ensure good network performance. Basic eye-mask test is an effective way to test a transmitter and is still widely used today. While receiver testing is more complicated and needs more methods. Fiberstore provides all kinds of transceivers, which can be compatible with many brands, such as Cisco, HP, IBM, Arista, Brocade, DELL, Juniper etc. And every fiber optic transceiver has been tested to ensure the optics superior quality. For more information about the transceivers or compatible performance test, please visit www.fs.com or contact us over sales@fs.com.


Article Source:

Rate this Article:  0.0/5(0 Ratings)

Related Articles:

How Much Do You Know Fiber Optic Testing?

by: Laura Yu (January 20, 2016) 
(Computers and Technology/Programming)

How to Guarantee A Perfect Fiber Optic Network Installation - Fiber Optic ..

by: Colin Yao (April 02, 2008) 
(Computers and Technology/Hardware)

Some Basic Concepts of Fiber Optic Loss Testing

by: Colin Yao (June 05, 2008) 
(Computers and Technology)

What Is a Fiber Optic Continuity Tester? Fiber Optic Technology Tutorial, ..

by: Colin Yao (February 27, 2008) 
(Computers and Technology/Hardware)

How to Assemble a Fiber Optic Connector - Fiber Optic Tutorial Series Five

by: Colin Yao (March 19, 2008) 
(Computers and Technology/Hardware)

What Is Fiber Optic Splicing? Fiber Optic Tutorial Series 9

by: Colin Yao (April 06, 2008) 
(Computers and Technology/Hardware)

High Quality Fiber Optic Splice Tent For Fiber Cabling Contractors

by: Colin Yao (March 03, 2008) 
(Computers and Technology/Hardware)

Understanding Fiber Optic Cable Installation - Fiber Optics Tutorial Series 7

by: Colin Yao (April 01, 2008) 
(Computers and Technology/Hardware)

Fiber Optic Technology Is All Around

by: Mikael Rieck (April 16, 2007) 
(Computers and Technology)

Everything You Need to Know About Fiber Optic Ethernet

by: Colin Yao (June 24, 2008) 
(Computers and Technology)